Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mathematical and Computational Applications ; 28(1):12, 2023.
Article in English | MDPI | ID: covidwho-2200500

ABSTRACT

Association rule mining plays a crucial role in the medical area in discovering interesting relationships among the attributes of a data set. Traditional association rule mining algorithms such as Apriori, FP growth, or Eclat require considerable computational resources and generate large volumes of rules. Moreover, these techniques depend on user-defined thresholds which can inadvertently cause the algorithm to omit some interesting rules. In order to solve such challenges, we propose an evolutionary multi-objective algorithm based on NSGA-II to guide the mining process in a data set composed of 15.5 million records with official data describing the COVID-19 pandemic in Mexico. We tested different scenarios optimizing classical and causal estimation measures in four waves, defined as the periods of time where the number of people with COVID-19 increased. The proposed contributions generate, recombine, and evaluate patterns, focusing on recovering promising high-quality rules with actionable cause-effect relationships among the attributes to identify which groups are more susceptible to disease or what combinations of conditions are necessary to receive certain types of medical care.

2.
Inflamm Res ; 71(1): 131-140, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1544398

ABSTRACT

OBJECTIVES: The role of B cells in COVID-19, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Here, we describe the novel landscape of circulating double-negative (DN) CD27- IgD- B cells in COVID-19 patients, representing a group of atypical and neglected subpopulations of this cell lineage. METHODS: Using multiparametric flow cytometry, we determined DN B cell subset amounts from 91 COVID-19 patients, correlated those with cytokines, clinical and laboratory parameters, and segregated them by principal components analysis. RESULTS: We detected significant increments in the DN2 and DN3 B cell subsets, while we found a relevant decrease in the DN1 B cell subpopulation, according to disease severity and patient outcomes. These DN cell numbers also appeared to correlate with pro- or anti-inflammatory signatures, respectively, and contributed to the segregation of the patients into disease severity groups. CONCLUSION: This study provides insights into DN B cell subsets' potential role in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.


Subject(s)
COVID-19/blood , COVID-19/immunology , Immunoglobulin D/blood , SARS-CoV-2 , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood , Adult , Aged , Aged, 80 and over , B-Lymphocytes/cytology , COVID-19/diagnosis , COVID-19/virology , Cell Lineage , Computational Biology , Disease Progression , Female , Humans , Male , Middle Aged , Principal Component Analysis , Prognosis , Respiration, Artificial , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL